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Abstract. The ideal noninteracting Bose gases trapped in a generic power-law potential in an any-
dimensional space are studied. We present theoretical results of the corrections of thermodynamic prop-
erties due to finite particle number effects. The calculation uses the Euler-Maclaurin approximation to
simplify the condensate fraction, and it also uses the Maslov index to discuss the boundary effect. Re-
cently BEC (Bose-Einstein Condensation) has also been observed in a microelectronic chip; therefore,
with a similar microstructure, we can obtain the effects of a rigid wall in a trap that have never been
found before.

PACS. 05.30.-d Quantum statistical mechanics

1 Introduction

Bose-Einstein condensation (BEC) was first predicted by
Einstein [1] in 1925 and was observed in a series of
remarkable experiments on the vapors of rubidium [2],
lithium [3], and sodium [4]. For a better understanding
of the BEC behavior theoretically, some important events
are worth being mentioned. The theory for a noninter-
acting ideal Bose gas confined in a rigid container had
already been given in a textbook [5]. Then de Groot
et al. [6] in 1950 calculated the BEC in a harmonic trap
and Grossmann et al. [7] in 1995 studied the finite-size ef-
fects. Also Bagnato et al. [8] in 1987 presented their semi-
classical calculation results for BEC in a general power-law
anisotropic potential trap, with different shapes in differ-
ent directions.

The noniteracting ideal Bose gas model is easy to cal-
culate and it points out the main features of BEC. Also
the measured transition temperature was found to be very
close to the value predicted by the ideal Bose gas model.
Conventionally there are two kinds of methods to calculate
the thermodynamic quantities (especially the condensate
temperature and condensate fraction) of ideal Bose gases
in a power-law potential trap. The first method consid-
ers the classically continuous limit of the energy spectrum
of a single particle in the trap and integrates the contin-
uous density of states to get the desired quantities [8].
The advantage of this method is that it can easily ex-
plore the shape and dimension effects for various kinds
of potentials. But it ignores the finiteness of the energy
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spectrum spacing and the ground state energy, which can
play important roles in determining the thermodynamic
properties of a finite system. The second method is only
used for the harmonic type traps [9], where we are able to
summarize the discrete spectrum with high accuracy for
the Bose-Einstein distribution and obtain the first order
corrections of the finite-size effects.

To carefully deal with a generic power-law anisotropic
potential trap, we develop a general method that combines
the advantages of the two above. Our method includes two
procedures:

In procedure I: First we find the energy spectrum
of a trapped particle, where a semiclassical quantization
rule [10] is used which can give very accurate energy spec-
tra for various power-law potentials even when there are
sharp boundaries in the space. The influences of the shape
of the trapping potential and the sharp boundaries in the
space on the energy spectrum of the trapped particle are
included in two parameters: the potential power and the
Maslov index respectively. The central idea is that both
the geometry of the potential (the power) and the topol-
ogy of the space (the boundary) influence the energy spec-
trum. We show three cases of different Maslov indices in
Figure 1.

In procedure II: We calculate the sum of the
Bose-Einstein distribution over all discrete spectra by the
Euler–Maclaurin summation formula. The first to use this
formula to deal with BEC was Haugset et al. [11]; it cal-
culates the thermodynamic properties in an anisotropic
harmonic trap for a finite number of particles very accu-
rately. This formula is a discrete summation which can be
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Fig. 1. The Maslov indices α for three cases; they are deter-
mined by the shapes of the potentials. In (a), the potential
with a finite t has α = 2. In (b), the potential is formed by the
right half of the potential as in (a), plus a rigid wall located at
x = 0. In (c), the potential is two infinite walls, the potential
power t = ∞ and α = 4 (see Eq. (1)).

written as an integral plus an infinite series of correction
terms. We make good use of the discrete energy spectra
from procedure I, and it can be extended to calculate var-
ious power-law potential problems.

This paper is organized as follows: In Section 2,
we give the energy spectrum derived by the semicas-
sical quantization procedure. Then we introduce the
Euler–Maclaurin summation formula and show the rela-
tion between the original summation and the correspond-
ing integration [12]. In Section 3, we present the zero order
result of our method for a generic d-dimension power-law
potential trap as reported by others [13]. In Section 4,
by considering the first order corrections in an anisotropic
harmonic trap, we show that the same finite-size effects as
in reference [14] can be deduced. In Section 5, we derive
the condensate fraction in a general d-dimensional power-
law potential trap and its first order corrections; these
results have never been derived before. We also obtain the
well-defined transition temperature Tc for a finite number
of particles. In Section 6, we discuss an example where the
potential is an ordinary harmonic trap and the particles
are confined in the upward half-space by a rigid wall be-
low. In Section 7, another example is discussed where the
particles are confined in a two-dimensional harmonic trap
that is between two rigid walls. Discussions of the results
are presented in Section 8.

2 Single particle energy spectrum
and Euler-Maclaurin formula

Let us first consider a particle of mass m in a generic
power-law potential in a d-dimensional space. The single-
particle Hamiltonian is given by:

H =
p2

2m
+

d∑

i=1

Ui

∣∣∣∣
xi

Li

∣∣∣∣
ti

, (1)

where Ui is the coupling constant, Li is the acting range,
and ti is the potential power.

To derive the energy spectrum we use the semiclassical
quantization rule:

∮
pi dqi = 2π

(
ni +

αi

4

)
�, i = 1, 2, . . . , d, (2)

where αi is the Maslov index of the ith dimension.
Applying (2) to the ith dimension we obtain the energy

levels:

Eni = Ai

(
ni +

αi

4

)2ti/(ti+2)

, (ni = 0, 1, 2, 3, · · · ), (3)

where

Ai = U
2/(ti+2)
i

(
π�

2

2mL2
i

)ti/(ti+2)
[

Γ (3
2 + 1

ti
)

Γ (1 + 1
ti

)

]2ti/(ti+2)

·
(4)

A system of N noninteracting bosons can only be
treated analytically in the grand-canonical ensemble. The
Bose-Einstein distribution function for a bosonic system
is given by:

n(E) =
1

e(E−µ)/kT − 1
=

∞∑

j=1

zje−jE/kT , (5)

where z = exp(µ/kT ) is the fugacity, µ is the chemical
potential, and n(E) represents the number of particles in
the energy level E, given by:

E =
d∑

i=1

Eni . (6)

The total number of particles is:

N =
∑

{n}
n(E) =

∞∑

j=1

zj
d∏

i=1

∞∑

ni=0

e−jEni
/kT . (7)

The sum runs over all possible states. Usually one goes
to the classical (continuous) limit to approximate the sum∑∞

ni=0 e−jEni
/kT as an integral:

n∑

i=0

f(i) ≈
∫ n

0

f(x)dx. (8)

To improve the accuracy, we employ the Euler-Maclaurin
summation formula [12]:

n∑

i=0

f(i) =
∫ n

0

f(x)dx − B1[f(0) + f(n)]

+
q∑

p=1

1
(2p)!

B2p

[
f (2p−1)(n) − f (2p−1)(0)

]

+ remainder term, (9)

remainder term =
−1

(2q)!

∫ n

0

f (2q)(x)B2q(x)dx. (10)
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Here each Bi is a Bernoulli number. For example, B1 =
−1/2, B2 = 1/6, and B4 = −1/30. The B2q(x)’s are the
Bernoulli functions, and the first two of them are:

B2(x) = x2 − x +
1
6
,

B4(x) = x4 − 2x3 + x2 − 1
30

· (11)

Formula (9) plays the role of a bridge that connects the
discrete summation with the continuous integration, and
it enables us to find more information than with only the
classical limit result.

In this paper we calculate the first order corrections
to the classical limit. These corrections include the effects
of the finite particle number and the Maslov index. In the
following sections we will present the details and discuss
two examples.

3 Classical limit

In the classical limit � → 0, the Maslov index αi can be
omitted. We have:

∞∑

ni=0

e−jEni
/kT �

∫ ∞

0

e−jEni
/kT dni,

=
(

kT

jAi

)(1/2+1/ti)

Γ

(
3
2

+
1
ti

)
,

=
(

kT

jAi

)ηi

Γ (ηi + 1). (12)

For simplicity, we define the variables:

ηi ≡ 1
2

+
1
ti

, (13)

η ≡
d∑

i=1

ηi, (14)

A ≡
d∏

i=1

A−ηi

i Γ (1 + ηi),

=
(2m)d/2

�dπd/2

d∏

i=1

LiΓ (1 + 1
ti

)

U
1/ti

i

· (15)

The total particle number now can be written as:

N =
∞∑

j=1

zj
∏

i

∞∑

ni=0

e−jEni
/kT ,

= A(kT )η
∞∑

j=1

zj

jη
,

≡ A(kT )ηgη(z), (16)

where gη(z) is the familiar Bose-Einstein function. It is
sometimes written as Liη(z).

The transition temperature for the classical limit cor-
responding to z → 1 is given by:

T 0
c =

1
k

(
N

Aζ(η)

)1/η

, (17)

where ζ(η) is the Riemann zeta function and we have used
the relation:

gη(1) = ζ(η). (18)

The condensate fraction N0/N can also be obtained as:

N0

N
= 1 − Ne

N
= 1 −

(
T

Tc

)η

, (19)

where N0 and Ne represent the number of particles in the
ground state and the other excited states, respectively.
Obviously, this result is the same as in reference [8], be-
cause we derive this result under the same classical (con-
tinuous) limit.

4 Harmonic trap

In this section we use our new method to handle the
d-dimensional anisotropic harmonic-oscillator trap. In this
trap, we have ti = 2, αi = 2 for each i-dimension, and the
energy level is:

Eni =
(

ni +
1
2

)
�ωi. (20)

The ground state energy for a single particle is:

E0 =
d∑

i=1

�ωi

2
=

d�ω̄

2
· (21)

Hereafter we define two variables ω̄ and Ω as:

ω̄ ≡ 1
d

d∑

i=1

ωi, (22)

Ω ≡
(

d∏

i=1

ωi

)1/d

. (23)

Note that below the transition temperature Tc ,the
chemical potential µ approaches ground state energy, not
zero. We further define two variables as:

ε ≡ E0 − µ,

(24)

z′ ≡ exp
(
− ε

kT

)
, (25)

then the ground state population can be written as:

N0 =
1

e(E0−µ)/kT − 1
=

z′

1 − z′
· (26)

Note that near Tc, it is z′ that approaches 1, not z.
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Now we use equation (9) to calculate
∑

ni
e−jEni

/kT

and keep only the first order corrections:

∞∑

ni=0

e−jEni
/kT �

∫ ∞

0

e−j[(ni+
1
2 )�ωi]/kT dni +

e−j�ωi/2kT

2
,

≈ kT

j�ωi

(
1 − j�ωi

2kT

)
+

1
2

=
kT

j�ωi
· (27)

Here we have assumed j�ωi � kT , which is correct ex-
cept for T � Tc. It is interesting to note that in the above
equation, the factor 1/2 provided by the ground state en-
ergy is equal in magnitude and opposite in sign to the
Bernoulli number B1, and that they cancel each other to
make the first order correction disappear. From this result
we get the total particle number:

N =
∞∑

j=1

zj
d∏

i=1

∞∑

ni=0

e−jEni
/kT ,

=
(

kT

�Ω

)d ∞∑

j=1

zj

jd
, (28)

which can also be written as:

N =
(

kT

�Ω

)d ∞∑

j=1

z′j

jd
ejE0/kT ,

�
(

kT

�Ω

)d ∞∑

j=1

z′j

jd

(
1 +

jE0

kT

)
,

=
(

kT

�Ω

)d

gd(z′) +
E0

�Ω

(
kT

�Ω

)d−1

gd−1(z′). (29)

In classical limit � → 0 then E0 → 0, the transition
temperature is given by:

T 0
c =

�Ω

k

[
N

gd(1)

]1/d

. (30)

Here we used �N1/d which is a finite number. It means
that the system is in the thermodynamic limit N →
∞. Considering the rightside of the second term of
equation (29), the well-defined transition temperature for
the finite system is:

Tc

T 0
c

= 1 − gd−1(1)
d[gd(1)]1−1/d

E0

�Ω
N−1/d. (31)

The correction term is a consequence of E0 �= 0 and
N �= ∞.

We also have the occupation fraction for the excited
states:

Ne

N
=
(

T

T 0
c

)d

+
E0

kT 0
c

gd−1(1)
gd(1)

(
T

T 0
c

)d−1

(32)

and the condensate fraction for the ground state at tem-
peratures T < Tc:

No

N
= 1 −

(
T

T 0
c

)d

− E0

kT 0
c

gd−1(1)
gd(1)

(
T

T 0
c

)d−1

. (33)

Our results are the same as the previous work [13].
Thus our method is as accurate as the previous method
in a harmonic trap and we can extend it to a general
power-law trap.

5 General power-law trap

In a general power-law trap, the Maslov index αi may not
be equal to 2, so we have the summation approximation:

∞∑

ni=0

e−jEni
/kT �

(
kT

jAi

)ηi

Γ (ηi + 1) −
(

αi − 2
4

)
,

�
(

kT

jAi

)ηi

Γ (ηi + 1) exp
[
βi

(
j

kT

)ηi
]
,

(34)

where

βi ≡ (αi − 2)
4Γ (1 + ηi)

Aηi

i . (35)

The particle number now can be expressed as:

N =
∞∑

j=1

zj
∏

i

∞∑

ni=0

e−jEni
/kT ,

= (kT )ηA

∞∑

j=1

zj

jη

∏

i

exp (−βi(j/kT )ηi) ,

� A(kT )ηgη(z′) + E0A(kT )η−1gη−1(z′)

−A

d∑

i=1

(kT )η−ηiβigη−ηi(z
′). (36)

This expression has one main term and two correction
terms. The domain of function gn(1) is n > 1, thus the
correction terms can neither be used in the 3-D rigid con-
tainer case, nor in the 2-D harmonic case. Hereafter we
just discuss the situations with the condition that all the
function is in domain, which is applicable to most traps.

The well-defined transition temperature Tc for the fi-
nite system is constrained by:

N = A(kTc)ηgη(1) + E0A(kTc)η−1gη−1(1)

−A

d∑

i=1

(kTc)η−ηiβigη−ηi(1), (37)

which is a little different from its thermodynamic-limit
counterpart T 0

c . Denote the ratio between these two char-
acteristic temperatures as:

Tc

T 0
c

� 1 − ∆tc, (38)
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then the shift:

∆tc ≡ E0gη−1(1)
ηkT 0

c gη(1)
−

d∑

i=1

βigη−ηi(1)
η(kT 0

c )ηigη(1)
(39)

represents the finite size correction to T 0
c .

The first correction term is the ordinary finite-size ef-
fect; it is caused by the nonzero ground energy level E0

and is proportional to N−1/η. The second terms are new
ones; they appear only when αi �= 2 and are proportional
to N−ηi/η for each i. Thus for a smooth potential like that
in Figure 1a this term vanishes.

The occupation fraction in excited states at tempera-
tures T < Tc can be derived from equation (37) as:

Ne

N
�
(

T

T 0
c

)η

+
gη−1(1)

gη

E0

kT 0
c

(
T

T 0
c

)η−1

−
d∑

i=1

gη−ηi(1)
gη(1)

βi

(kT 0
c )ηi

(
T

T 0
c

)η−ηi

. (40)

Equation (40) indicates that the occupation fraction of
the excited states is more important when the system has
a finite number of particles. We can also obtain the con-
densate fraction for T < Tc:

N0

N
= 1 − Ne

N

� 1 −
(

T

T 0
c

)η

− E0gη−1(1)
kT 0

c gη

(
T

T 0
c

)η−1

+
d∑

i=1

βigη−ηi(1)
(kT 0

c )ηigη(1)

(
T

T 0
c

)η−ηi

· (41)

Here the finiteness of N always makes this fraction de-
crease.

In the following two sections we will apply these for-
mulas to study two concrete examples.

6 Example 1

In the first example we consider the trapping potential:

U(z) =






1
2mω2r2, z > 0

∞, z < 0
, (42)

then we have:

α1 = α2 = 2, α3 = 3, (43)

t1 = t2 = 2, t3 = 2 (oneside). (44)

Remember that the trapping potential along the 3rd
dimension consists of one half of the original harmonic
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Fig. 2. Numerical results for example 1. The condensate frac-
tion as a function of temperature for N = 103, 104, 105, and ∞.

type potential, together with a rigid wall. Thus, according
to the rules and formulas discussed in Section 2, we get:

η1 = η2 = η3 = 1, η = 3,

A1 = A2 = �ω, A3 = 2�ω, A =
1

2(�ω)3
,

E1,0 = E2,0 =
�ω

2
, E3,0 =

3�ω

2
, E0 =

5�ω

2
(45)

and:
β1 = 0, β2 = 0, β3 =

�ω

2
· (46)

The total particle number is given by:

N =
1
2

(
kT

�ω

)3

g3(z′) +
(

kT

�ω

)2

g2(z′), (47)

and the transition temperature in the thermodynamic
limit is:

T 0
c =

�ω

k

[
2N

g3(1)

]1/3

. (48)

This result is 21/3 times larger than the result obtained
in the case without rigid walls. The transition temperature
shift ratio is:

∆tc =
2�ωg2(1)
3kT 0

c g3(1)
=

2g2(1)
3g3(1)

(
g3(1)
2N

)1/3

, (49)

which is 4/3×21/3 times larger than the value obtained in
the no-rigid wall case. Finally, we obtain the condensate
fraction:

N0

N
= 1 −

(
T

T 0
c

)3

− 2�ωg2(1)
kT 0

c g3(1)

(
T

T 0
c

)2

(50)

in the T < Tc region. The normalized finite-size effect
term is 4/3 × 2−1/3 times larger than in the no-rigid wall
case.

Some numerical results of this example are shown in
Figure 2.
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7 Example 2

Now we consider the potential:

U(z) =






1
2mω2(x2 + y2), 0 < z < L

∞, z < 0 or z > L
· (51)

This potential in the third dimension (the z direction) is
an infinite well potential centered at z = L/2 and has a
half-width L3 = L/2. Thus we have:

α1 = α2 = 2, α3 = 4, (52)

and
t1 = t2 = 2, t3 = ∞. (53)

The quantization rule in Section 2 gives us:

η1 = η2 = 1, η3 =
1
2
, η =

5
2
,

A1 = A2 = �ω, A3 = δ�ω, A =
√

π

2
√

δ(�ω)5/2
,

E1,0 = E2,0 =
�ω

2
, E3,0 = δ�ω, E0 = (1 + δ)�ω, (54)

where m is the mass of the particle. The parameter δ is
defined by:

δ ≡ �π2

2mL2ω
, (55)

and the β’s are given by:

β1 = 0, β2 = 0, β3 =

√
δ�ω

π
· (56)

The total particle number now becomes:

N =
1
2

√
π

δ

(
kT

�ω

)5/2

g5/2(z′)

+
1 + δ

2

√
π

δ

(
kT

�ω

)3/2

g3/2(z′)

−1
2

(
kT

�ω

)2

g2(z′), (57)

and the transition temperature in the thermodynamic
limit is:

T 0
c =

�ω

k

(
δ

π

)1/5( 2N

g5/2(1)

)2/5

, (58)

with the temperature shift ratio:

∆tc =
2(1 + δ)g3/2(1)

5g5/2(1)
�ω

kT 0
c

− 2g2(1)
5g5/2(1)

√
δ�ω

πkT 0
c

=
2(1 + δ)g3/2(1)

5g5/2(1)

(π

δ

)1/5
(

g5/2(1)
2N

)2/5

− 2g2(1)
5g5/2(1)

(
δ

π

)2/5(g5/2(1)
2N

)1/5

· (59)
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Fig. 3. Numerical results for example 2. The condensate frac-
tion as a function of temperature for N = 103, 104, 105, and ∞
at δ = 0.01.
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Fig. 4. Numerical results for example 2. The condensate frac-
tion as a function of temperature for δ = 0.001, 0.01, 0.1,
and 1.0 at N = 1000.

Finally we obtain the condensate fraction:

N0

N
= 1 −

(
T

T 0
c

)5/2

− (1 + δ)g3/2(1)
g5/2(1)

�ω

kT 0
c

(
T

T 0
c

)3/2

+
g2(1)

g5/2(1)

√
δ�ω

πkT 0
c

(
T

T 0
c

)2

(60)

in the T < Tc region.
Numerical results for this example are shown in

Figures 3 and 4.

8 Discussion

We use the grand canonical ensemble to study the ther-
modynamic properties of a noninteracting boson gas that
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is trapped in a power-law potential. Since in this nonin-
teracting case the total energy of the whole system can
simply be written as the sum of the energy of each indi-
vidual particle, the original many body problem is reduced
to a one particle problem. Moreover, since the kinetic en-
ergy and the trapping potential discussed in this paper are
separable in each dimension, the d-dimensional problem
is also reduced to a one dimensional problem. Thus this
method is able to deal with various power-law potentials
and dimensionality problems, something not achieved by
other methods. Accordingly, we show more clearly that
the energy spectrum of each dimension is independent,
and it is easy to understand the role each dimension plays
in the BEC. We then apply the semiclassical quantization
rule to each dimension of the power-law potential trap to
get the energy spectrum of the system. Finally, we use
the Euler-Maclaurin summation formula to sum over the
Bose-Einstein distribution and get the desired quantities
such as the transition temperature and condensate frac-
tion for a finite number particles. This is what we did in
this paper.

The drawback of this method is that the divergence
mentioned enters the mathematics. We have not yet found
a general method to treat it. To avoid the divergence,
Haugset et al. [11] used the Euler–Maclaurin approxima-
tion by another parameter expansion in a harmonic trap.
They were able to derive higher-order corrections clev-
erly but it is restricted to a power ti = 2. In the 3-D
rigid container case, the correction also encounters the
same difficulty. Pathria applied another technique called
the Poisson summation formula to get the correction [15],
but this technique is hard to extend to any other case.

Recently, BEC has also been observed in a microelec-
tronic chip [16]. In this microstructure, one needs to con-
sider the effect caused by βi. In the future, we expect that
there will be more BEC phenomena observed in microsys-
tems, and our work may provide some useful insights into
the understanding of those systems.
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